
NqProblemExtended application.

Description: : This program was born to play around the N Queens Problem.
 We give a solution which considers the problem from a whole
 different aspect and splits the actual calculation from the
 real rules of the chess game. In this way, the calculations
 of rooks and bishops are also available as well as their
 super or awesome versions.
 (super means that the pieces can also attack as a knight and)
 (awesome means the above but till the edge of the chessboard)
 Preplaced chess pieces are also available to solve N Queens
 Completion problem.

Published : 01.01.2018

Current version : 1.0

Developed by : Jozsef Kiss
 <thehobbypianist@gmail.com>

Change log : 1.0 - 01.01.2018
 Initial release.

Before and during the implementing of the java application, there was no
research work to not be guided by other thoughts.
The main goal was the creation of a unique logic and working solution!
The thinking was the classical: to count the possible placings to the N size
board, the pieces have to be placed in all of the correct ways and this positions
have to be counted (found++).
It was not a goal to notice elementary or complex rules between the placings
to "save" several other placings and to save less or more processing time.
According to this, the actual found placing can be printed immediately and
without any further calculation on every found++ events.

The base thought was that if a quicker than classical recursive-backtrack
solution exists then it has to be simple or not too complex because the running
time of that program will be necessarily longer otherwise.
So, the alternative solution has to be able to be found in a finite but rather
a "short" time.

The main goals were the followings:
 1.the running time of the searching solutions on a n=15 size board has to be
 the half of the original solution which is 1:44s -> has to be under 52s!
 (the original solution will also be implemented to compare these elapsed times
 on the same computer)
 2.to place every queens, no cheating! :)
 3.if possible, to find a solution which contains the logic of the searching and
 the rules of the chess game separately
 4.to use basic datatypes to port this software to another languages easily
 5.the time of this project is maximum 1 month gross time

It can be seen below that the aboves are successfully achieved:
 1.the 15 queens can be searched (~17s) under the sixth of the time of searching
 on the original way (1:44s)
 2.every queens will be placed
 3.anything is possible to search on the board by the separation of the chess
 rules and the logic of searching and we declared some new chess pieces just
 for fun
 and, for example bishop is also searchable which is a tricky chess piece to
 find its placings on the classical way.
 4.ints, Strings, booleans, arrays will be used
 to write onto the console and to get the system time, it will use the
 java.lang.System package which can be replaced easily to others
 5.it is done but all of the developing, implementing and testing works are done
 in almost a quarter year as outside of main work hours
+1.the logic was born to find all (the placing order matters) and the ordered
 (the ordered solution matters only) placings with a minimal conversion
+2.this software gives a 9 in 1 solution, 9 kinds of chess pieces are searchable
+3.preplaced chess pieces are available to specify so the N Queens (Figures)

 Completion problem is also solvable.

Almost everyone wanted to put queens onto the chessboard because this piece
can hit a lot of directions. If we don't count the pieces that can step
only one at a time: pawns and king, there are other chess pieces to attack
on the whole chessboard:
 - queen
 - rook
 - bishop
These chess pieces can attack till the edge of the chessboard. The knight
seems to be forgotten.
We know the kind super queen. This is a queen that can attack according to
the classical rules of the chess game and also to L directions. In this way,
we can define this property to all of the aboves:
 - super queen
 - super rook
 - super bishop
So, we can use the knight too. But why should we stop here?
The ability of attacking till to the edge of the chessboard is known so we
can declare the awesome property similar to the super property. The
difference is: the super chess piece can attack only 1 knight distance
while the awesome piece can do the same but till the edge of the chessboard
in that direction.
We can use the followings:
 - awesome queen
 - awesome rook
 - awesome bishop

The possible attackings of all of the aboves are:

 Queen: Super queen: Awesome queen:
 + + + + q + + + + + + + + q + + + + + + + + q + + + +
 - - - + + + - - - - - + + + + + - - - - + + + + + - -
 - - + - + - + - - - - + + + + + - - + - + + + + + - +
 - + - - + - - + - - + - - + - - + - - + - - + - - + -
 + - - - + - - - + + - - - + - - - + + - + - + - + - +
 - - - - + - - - - - - - - + - - - - - - - - + - - - -
 - - - - + - - - - - - - - + - - - - - + - - + - - + -
 - - - - + - - - - - - - - + - - - - - - - - + - - - -
 - - - - + - - - - - - - - + - - - - + - - - + - - - +

 Rook: Super rook: Awesome rook:
 + + + + r + + + + + + + + r + + + + + + + + r + + + +
 - - - - + - - - - - - + - + - + - - - - + - + - + - -
 - - - - + - - - - - - - + + + - - - + - - + + + - - +
 - - - - + - - - - - - - - + - - - - - - - - + - - - -
 - - - - + - - - - - - - - + - - - - - - + - + - + - -
 - - - - + - - - - - - - - + - - - - - - - - + - - - -
 - - - - + - - - - - - - - + - - - - - + - - + - - + -
 - - - - + - - - - - - - - + - - - - - - - - + - - - -
 - - - - + - - - - - - - - + - - - - + - - - + - - - +

 Bishop: Super bishop: Awesome bishop:
 - - - - b - - - - - - - - b - - - - - - - - b - - - -
 - - - + - + - - - - - + + - + + - - - - + + - + + - -
 - - + - - - + - - - - + + - + + - - + - + + - + + - +
 - + - - - - - + - - + - - - - - + - - + - - - - - + -
 + - - - - - - - + + - - - - - - - + + - + - - - + - +
 - - - - - - - - - - - - - - - - - - - - - - - - - - -
 - - - - - - - - - - - - - - - - - - - + - - - - - + -
 - - - - - - - - - - - - - - - - - - - - - - - - - - -
 - - - - - - - - - - - - - - - - - - + - - - - - - - +

Applying the aboves, this 9 chess figures can be placed by using this
program.

The used solution.

The basic concept is: let's think forward and not backward!
Calculate the usable positions immediately after a piece placing. We can
achieve that the next placing will happen to an exactly correct place. This
methodology will use less resources to calculate, we guess.
(Instead of the regular solutions which place a queen into a position and
check whether other already placed pieces can attack that or not.)

We will represent the chessboard using an ordered sequence.
Fe.4x4:
0 1 2 3 -> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 5 6 7
8 9 10 11 The representation of an N dimensional chessboard is an ordered
12 13 14 15 sequence from 0 to (N^2 - 1).

If we place a chess piece, the following will happen.
0: we have an input sequence that may be the original or a subset of that
1: we will choose an element of this input sequence
2: we calculate the sub-sequence of the input according to the aboves and
 the precalculated attacking map

It can be guaranteed that the next piece placing will happen onto an
exactly correct place.

From this, all of the solutions will be found, even including the orders of
the placed pieces.
If we want to know only one of these then we have to choose one.
This will be the ordered positions of that solutions.
Fe. (4x4): we will find
1 7 8 14, 1 7 14 8, 1 8 7 14, 1 8 14 7, 1 14 7 8, 1 14 8 7 ...24 * 2 = 48 solutions.
If we would like to know the different solutions then we will catch only the
ordered ones, so we will have 1 7 8 14 and 2 4 11 13.
To achieve that, the precalculated attacking map will be changed. This would
be enough but we can use some optimization in the logic of calculation
to speed up the searchings.
(The right positions will be found according only to the attacking map
 but there will be too many avoidable dead searches.)

Options.

 Mode: [o , i , t]
 o: original solution, using backtrack-recursion
 it will run a little bit quicker because it uses the precalculated attacking map
 i: improved solution that can place all of the above mentioned 9 chess pieces
 t: testing mode to compare the running times of original and improved
 Dimension: [int]
 the chessboard should be the size of this and this number of chess pieces
 have to be placed onto that
(the other options can be applied to the improved mode)
 Pieces: [q , r , b]
 q: queen
 r: rook
 b: bishop
 Kinds: [r , s , a]
 r: regular, chess piece able to attack as the traditional
 s: super, traditional plus knight attackings
 a: awesome, traditional plus knight attackings till the edge
 Hits: [o , a , f]
 o: ordered puts count
 a: all of the puts will be searched for, that means, the orders of the
 pieces will appear:
 all solutions == dimension! * ordered solutions
 f: first placing will be found
 Uniques: [y , n]
 y: counts the solutions which cannot be rotated into previously found
 (it is slow because there have to be extra efforts to find a rotated
 version already placed of the current)
 n: every found placings count and we don't search for already placed

 and rotated versions
 Log: [n , i , d]
 n: no log
 i: info, prints the number of found solutions and the elapsed times by
 the placed pieces into the first row
 d: debug, every information will be printed to the console during the searching
 Placing: [int values separated by , character]
 these chess figures have to be placed initially, can be leaved as empty

The core algorithm will be copied into several places because of the many
options, so the size of the source code is relatively large.
The core algorithm to run i mode:

0. precalculate the elements of isFiltered 2 dimensional array by the given
 rule set according to:
 - dimension (n)
 - what pieces will be used (q , r , b)
 - what kind of those (r , s , a)
 - hits (o , a , f)
1. filter function which gives what elements of the input sequence
 can be used further by the currently placed piece
 applyFiltersXXX (2):
 boolean [] a = isFiltered [currPiecePos] ;
 for (int i = from ; i < to ; i ++)
 {
 if (! a [workingArray [i]])
 {
 workingArray [currIndToWrite] = workingArray [i] ;
 currIndToWrite ++ ;
 }
 }
 return currIndToWrite - to ;
2. recursive method to put the pieces onto the next position from the
 previous filtering
 putPiecesXXX (18):
 if (pieceToPlace < dimension)
 {
 if (to - from >= dimension - pieceToPlace)
 {
 int count ;
 for (int i = from ; i < to ; i ++)
 {
 currPath [pieceToPlace] = workingArray [i] ;
 currIndToWrite = to ;
 count = applyFilters (currPath [pieceToPlace] , from , to) ;
 putPiecesXXX (pieceToPlace + 1 , currIndToWrite-count , currIndToWrite) ;
 }
 }
 else
 {
 deads ++ ;
 }
 }
 else
 {
 found ++ ;
 }

8-10 modifications of the above algorithm have been tried (for example: 2 pieces
have been placed at the same time or the pieces have been placed onto the midline,
etc.), but none of these could run faster. We found that the running time is the
minimum when the above principle is implemented in this way.

The curves to fit mostly to the run results of the aboves:

D elapsed (ms)
13 536
14 2941
15 17580

16 117029
17 820977
18 6081743

5th polynomial:
y = -17692570000 + 5994815000*x - 811125900*x^2 + 54785620*x^3 - 1847318*x^4 + 24879.31*x^5

exponential:
y = 0.289471 + 1.398972e-9*e^(+2.000462*x)

The results of using this software.

We have calculated some cases and the results of these can be seen below.

The used configuration was
 - Windows 10 x64 OS
 - Intel Celeron N2840 (2 logical CPU cores, 2.16GHz)
 - 8GB 1333MHz DDR3

Calculating awesome queens up to 28 is an exception because other computer
has been used. The parameters are mentioned there.

////////// T E S T I N G M O D E //////////

This is the running of test (t) mode which compares the method
original (o) and improved (i).

The command was:
 java -jar NqProblemExtended.jar t 18

mode o -> mode i (improved version versus original solution)
mode o won't be run,
 the times have to be written manually to the source
rate1: i elapsed / o elapsed
rate2: i (k) elapsed / i (k-1) elapsed

n count elapsed elapsed2 -> elapsed elapsed2 count rate1 rate2
13 c73712 2377 ms (2s 377ms) -> 536 ms (536ms) c73712 (0.225 |)
14 c365596 15116 ms (15s 116ms) -> 2941 ms (2s 941ms) c365596 (0.194 | 5.486)
15 c2279184 104357 ms (1m 44s 357ms) -> 17580 ms (17s 580ms) c2279184 (0.168 | 5.977)
16 c14772512 766915 ms (12m 46s 915ms) -> 117029 ms (1m 57s 29ms) c14772512 (0.152 | 6.656)
17 c95815104 6040290 ms (1h 40m 40s 290ms) -> 820977 ms (13m 40s 977ms) c95815104 (0.135 | 7.015)
18 c666090624 48165728 ms (13h 22m 45s 728ms) -> 6081743 ms (1h 41m 21s 743ms) c666090624 (0.126 | 7.407)

////////// A W E S O M E Q E E N S O N 4 0 T H R E A D S //////////

This calculation was made on a laptop, having parameters:
 - Dell 3521
 - Intel i3-3227 (4 logical CPU cores, 1.9GHz)
 - 2x4 GB 1333MHz DDR3

The thread pool has been used on 40 threads because the running time is the
lowest in this case.

The command of the last calculation was:
 java -jar NqProblemExtended.jar i 28 q a o 40 n i

 +-----------+-----------+-----------------------+
 | dimension | solutions | elapsed |
 +-----------+-----------+-----------------------+
 | 1 | 1 | 47ms |
 | 2 -> 9 | 0 | 47 -> 64ms |
 | 10 | 4 | 78ms |
 | 11 | 33 | 78ms |
 | 12 | 6 | 78ms |
 | 13 | 59 | 79ms |
 | 14 | 8 | 94ms |
 | 15 | 12 | 109ms |
 | 16 | 18 | 187ms |
 | 17 | 180 | 250ms |
 | 18 | 124 | 594ms |
 | 19 | 361 | 1s 687ms |
 | 20 | 516 | 6s 860ms |
 | 21 | 689 | 25s 728ms |
 | 22 | 2092 | 2m 0s 498ms |
 | 23 | 5639 | 8m 32s 988ms |
 | 24 | 22794 | 41m 52s 252ms |
 | 25 | 68044 | 3h 9m 59s 430ms |
 | 26 | 275732 | 15h 45m 42s 275ms |
 | 27 | 767820 | 3d 3h 3m 47s 476ms |

 | 28 | 3698242 | 17d 10h 58m 14s 423ms |
 +-----------+-----------+-----------------------+
 awesome queens on 40 threads

////////// D E B U G M O D E O F 4 Q U E E N S //////////

Let's see an example of using debug mode!
This case will display the core logic, the input and output sequences will be
shown according to the currently placed queen and the rule set (by queen).

Command:
 java -jar NqProblemExtended.jar i 4 q r o 1 n d
 []
 | ----------+-------------------------------------
 | to filter : [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
 | , 9 , 10 , 11 , 12 , 13 , 14 , 15]
 | Piece : 0
 | filtered : [6 , 7 , 9 , 11 , 13 , 14]
 [0]
 | ----------+-------------------------------------
 | to filter : [6 , 7 , 9 , 11 , 13 , 14]
 | Piece : 6
 | filtered : [13]
 [0 6]
 0
 | ----------+-------------------------------------
 | to filter : [6 , 7 , 9 , 11 , 13 , 14]
 | Piece : 7
 | filtered : [9 , 14]
 [0 7]
 | ----------+-------------------------------------
 | to filter : [9 , 14]
 | Piece : 9
 | filtered : []
 [0 7 9]
 0
 0
 0
 | ----------+-------------------------------------
 | to filter : [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
 | , 9 , 10 , 11 , 12 , 13 , 14 , 15]
 | Piece : 1
 | filtered : [7 , 8 , 10 , 12 , 14 , 15]
 [1]
 | ----------+-------------------------------------
 | to filter : [7 , 8 , 10 , 12 , 14 , 15]
 | Piece : 7
 | filtered : [8 , 12 , 14]
 [1 7]
 | ----------+-------------------------------------
 | to filter : [8 , 12 , 14]
 | Piece : 8
 | filtered : [14]
 [1 7 8]
 | ----------+-------------------------------------
 | to filter : [14]
 | Piece : 14
 | filtered : []
 [1 7 8 14]

 | 1 | 7 | 8 | 14 |
 * q * *
 * * * q
 q * * *
 * * q *
 1
 1
 1
 1
 | ----------+-------------------------------------
 | to filter : [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
 | , 9 , 10 , 11 , 12 , 13 , 14 , 15]
 | Piece : 2
 | filtered : [4 , 9 , 11 , 12 , 13 , 15]
 [2]
 | ----------+-------------------------------------
 | to filter : [4 , 9 , 11 , 12 , 13 , 15]
 | Piece : 4
 | filtered : [11 , 13 , 15]
 [2 4]
 | ----------+-------------------------------------
 | to filter : [11 , 13 , 15]
 | Piece : 11
 | filtered : [13]
 [2 4 11]
 | ----------+-------------------------------------
 | to filter : [13]
 | Piece : 13
 | filtered : []
 [2 4 11 13]

 | 2 | 4 | 11 | 13 |
 * * q *
 q * * *
 * * * q
 * q * *
 1
 1

 1
 1
 | ----------+-------------------------------------
 | to filter : [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
 | , 9 , 10 , 11 , 12 , 13 , 14 , 15]
 | Piece : 3
 | filtered : [4 , 5 , 8 , 10 , 13 , 14]
 [3]
 | ----------+-------------------------------------
 | to filter : [4 , 5 , 8 , 10 , 13 , 14]
 | Piece : 4
 | filtered : [10 , 13]
 [3 4]
 | ----------+-------------------------------------
 | to filter : [10 , 13]
 | Piece : 10
 | filtered : []
 [3 4 10]
 0
 0
 | ----------+-------------------------------------
 | to filter : [4 , 5 , 8 , 10 , 13 , 14]
 | Piece : 5
 | filtered : [14]
 [3 5]
 0
 0
2

 2
 positions have been found
 all attempts: 6
 (33.33% success)
 in 279ms
 (279)

////////// F I R S T Q U E E N S O N 3 0 D I M B O A R D /////////

 | 0 | 32 | 64 | 91 | 123 | 158 | 190 | 222 | 254 | 276 | 322 | 355 | 387 | 414
 | 441 | 473 | 509 | 536 | 568 | 585 | 611 | 639 | 667 | 695 | 737 | 769 | 796
 | 823 | 860 | 888 |
 q * R
 * * q * E
 * * * * q * G
 * q * U
 * * * q * L
 * * * * * * * * q * A
 * * * * * * * * * * q * * * * * * * * * * * * * * * * * * * R
 * * * * * * * * * * * * q * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * q * * * * * * * * * * * * * * *
 * * * * * * q *
 * q * * * * * * *
 * q * * * *
 * q * *
 * q * * * * *
 * q * * * * * * * *
 * q * * * * * *
 * q
 * q * * *
 * q *
 * * * * * * * * * * * * * * * q * * * * * * * * * * * * * *
 * * * * * * * * * * * q * * * * * * * * * * * * * * * * * *
 * * * * * * * * * q *
 * * * * * * * q *
 * * * * * q *
 * * * * * * * * * * * * * * * * * q * * * * * * * * * * * *
 * * * * * * * * * * * * * * * * * * * q * * * * * * * * * *
 * * * * * * * * * * * * * * * * q * * * * * * * * * * * * *
 * * * * * * * * * * * * * q * * * * * * * * * * * * * * * *
 * q * * * * * * * * *
 * * * * * * * * * * * * * * * * * * q * * * * * * * * * * *

 1
 position has been found,
 all attempts: 20256683
 (0.0% success)
 in 12s 542ms
 (12542)

 | 0 | 33 | 66 | 99 | 121 | 154 | 187 | 220 | 253 | 290 | 324 | 357 | 379 | 413
 | 446 | 455 | 509 | 535 | 554 | 598 | 602 | 646 | 668 | 711 | 731 | 768 | 795
 | 822 | 862 | 887 |

 q * S
 * * * q * U
 * * * * * * q * P
 * * * * * * * * * q * E
 * q * R
 * * * * q *
 * * * * * * * q *
 * * * * * * * * * * q * * * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * q * * * * * * * * * * * * * * * *
 * q * * * * * * * * *
 * q * * * * *
 * q * *
 * * * * * * * * * * * * * * * * * * * q * * * * * * * * * *
 * q * * * * * *
 * q * * *
 * * * * * q *
 * q
 * q * * * *
 * * * * * * * * * * * * * * q * * * * * * * * * * * * * * *
 * q *
 * * q *
 * * * * * * * * * * * * * * * * q * * * * * * * * * * * * *
 * * * * * * * * q *
 * q * * * * * * * *
 * * * * * * * * * * * q * * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * * * * * q * * * * * * * * * * *
 * * * * * * * * * * * * * * * q * * * * * * * * * * * * * *
 * * * * * * * * * * * * q * * * * * * * * * * * * * * * * *
 * q * * * * * * *
 * * * * * * * * * * * * * * * * * q * * * * * * * * * * * *

 1
 position has been found,
 all attempts: 16589947
 (0.0% success)
 in 11s 999ms
 (11999)

 | 0 | 33 | 66 | 99 | 132 | 166 | 208 | 229 | 263 | 296 | 329 | 332 | 367 | 401
 | 435 | 458 | 501 | 511 | 567 | 592 | 605 | 647 | 674 | 700 | 724 | 774 | 800
 | 823 | 865 | 888 |
 q * A
 * * * q * W
 * * * * * * q * E
 * * * * * * * * * q * S
 * * * * * * * * * * * * q * * * * * * * * * * * * * * * * * O
 * * * * * * * * * * * * * * * * q * * * * * * * * * * * * * M
 * q * E
 * * * * * * * * * * * * * * * * * * * q * * * * * * * * * *
 * q * * * * * *
 * q * * *
 * q
 * * q *
 * * * * * * * q *
 * * * * * * * * * * * q * * * * * * * * * * * * * * * * * *
 * * * * * * * * * * * * * * * q * * * * * * * * * * * * * *
 * * * * * * * * q *
 * q * * * * * * * *
 * q *
 * q * *
 * q * * * * * * *
 * * * * * q *
 * * * * * * * * * * * * * * * * * q * * * * * * * * * * * *
 * * * * * * * * * * * * * * q * * * * * * * * * * * * * * *
 * * * * * * * * * * q * * * * * * * * * * * * * * * * * * *
 * * * * q *
 * q * * * * *
 * q * * * * * * * * *
 * * * * * * * * * * * * * q * * * * * * * * * * * * * * * *

 * q * * * *
 * * * * * * * * * * * * * * * * * * q * * * * * * * * * * *

 1
 position has been found,
 all attempts: 64652148
 (0.0% success)
 in 50s 572ms
 (50572)

////////// T H E A T T A C K I N G M A P //////////

The visualization of the attackings.
This table represents all of the pieces by all of the pieces. The number of the
bow ties in the middle is dimension minus 1. r || b == q.
"+" means the pieces located in the col and in the row can attack each other,
" " means they are not.
The command for example to show this: java -jar NqProblemExtended.jar i 5 q r f 1 n n

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 + + + + + + + + + + + + +
1 + + + + + + + + + + + + +
2 + + + + + + + + + + + + +
3 + + + + + + + + + + + + +
4 + + + + + + + + + + + + +
5 + + + + + + + + + + + + +
6 + + + + + + + + + + + + + + +
7 + + + + + + + + + + + + + + +
8 + + + + + + + + + + + + + + +
9 + + + + + + + + + + + + +
10 + + + + + + + + + + + + +
11 + + + + + + + + + + + + + + +
12 + + + + + + + + + + + + + + + + +
13 + + + + + + + + + + + + + + +
14 + + + + + + + + + + + + +
15 + + + + + + + + + + + + +
16 + + + + + + + + + + + + + + +
17 + + + + + + + + + + + + + + +
18 + + + + + + + + + + + + + + +
19 + + + + + + + + + + + + +
20 + + + + + + + + + + + + +
21 + + + + + + + + + + + + +
22 + + + + + + + + + + + + +
23 + + + + + + + + + + + + +
24 + + + + + + + + + + + + +
///// O R D E R E D A N D N O T U N I Q U E S O L U T I O N S /////

Here are some more examples of the calculations.

ordered and not unique (by mirroring) queen solutions
+-----------++-----------+-----------+-----------+
| dimension || regular | super | awesome |
+-----------++-----------+-----------+-----------+
| 1 || 1 | 1 | 1 |
| 2 || 0 | 0 | 0 |
| 3 || 0 | 0 | 0 |
| 4 || 2 | 0 | 0 |
| 5 || 10 | 0 | 0 |
| 6 || 4 | 0 | 0 |
| 7 || 40 | 0 | 0 |
| 8 || 92 | 0 | 0 |
| 9 || 352 | 0 | 0 |
| 10 || 724 | 4 | 4 |
| 11 || 2680 | 44 | 33 |
| 12 || 14200 | 156 | 6 |
| 13 || 73712 | 1876 | 59 |
| 14 || 365596 | 5180 | 8 |
| 15 || 2279184 | 32516 | 12 |
+-----------++-----------+-----------+-----------+

ordered and not unique (by mirroring) rook solutions
+-----------++-----------+-----------+-----------+
| dimension || regular | super | awesome |
+-----------++-----------+-----------+-----------+
| 1 || 1 | 1 | 1 |
| 2 || 2 | 2 | 2 |
| 3 || 6 | 2 | 1 |
| 4 || 24 | 8 | 8 |
| 5 || 120 | 20 | 10 |
| 6 || 720 | 94 | 22 |
| 7 || 5040 | 438 | 38 |
| 8 || 40320 | 2766 | 276 |
| 9 || 362880 | 19480 | 475 |
| 10 || 3628800 | 163058 | 2304 |
| 11 || 39916800 | 1546726 | 4884 |
| 12 || 479001600 | 16598282 | 24528 |
+-----------++-----------+-----------+-----------+

ordered and not unique (by mirroring) bishop solutions
+-----------++-----------+-----------+-----------+
| dimension || regular | super | awesome |
+-----------++-----------+-----------+-----------+
| 1 || 1 | 1 | 1 |
| 2 || 4 | 4 | 4 |
| 3 || 26 | 6 | 6 |
| 4 || 260 | 86 | 86 |
| 5 || 3368 | 854 | 293 |
| 6 || 53744 | 9556 | 2824 |
| 7 || 1022320 | 146168 | 12098 |
| 8 || 22522960 | 2660326 | 234450 |
| 9 || 565532992 | 56083228 | 1465563 |
+-----------++-----------+-----------+-----------+

///////// A L L A N D N O T U N I Q U E S O L U T I O N S /////////

Not unique solutions means here that the order of the placed pieces counts.

all and not unique (by mirroring) queen solutions
+-----------++---------------------------+-------------+
| dimension || solutions | elapsed |
+-----------++---------------------------+-------------+
| 1 || 1 (== 1 * 1!) | 32ms |
| 2 || 0 (== 0 * 2!) | 47ms |
| 3 || 0 (== 0 * 3!) | 40ms |
| 4 || 48 (== 2 * 4!) | 47ms |
| 5 || 1200 (== 10 * 5!) | 31ms |
| 6 || 2880 (== 4 * 6!) | 62ms |
| 7 || 201600 (== 40 * 7!) | 125ms |
| 8 || 3709440 (== 92 * 8!) | 1s 884ms |
| 9 || 127733760 (== 352 * 9!) | 1m 3s 108ms |
+-----------++---------------------------+-------------+

///////// F I R S T T O P R E P L A C E D B I H S H O P S /////////

Let's calculate the positions of the chess
pieces when they don't attack each other!

 0 mode (original,improved,testing) : i
 1 dimension (a positive integer) : 8
 2 pieces (queen,rook,bishop) : b
 3 kinds (regular,super,awesome) : r
 4 hits (ordered,all,first) : f
 5 threads (a positive integer) : 1
 6 uniques (no,yes) : n
 7 log (no,info,debug) : n
 8 placings (ints separated by , char) : 43,44,45,46

Started : Sun Dec 17 15:39:23 CET 2017

Attacking map is too large so it
could be printed under dimension 7

 Preplaced chess pieces are: 43 44 45 46

 (case : improved 16)

 | 43 | 44 | 45 | 46 | 2 | 3 | 4 | 5 |
 * * b b b b * *
 * * * * * * * *
 * * * * * * * *
 * * * * * * * *
 * * * * * * * *
 * * * B B B B *
 * * * * * * * *
 * * * * * * * *

 1
 position has been found,
 in 78ms
 (78)

Other perceptions of regular piece placings.

Rook position searching:
 - the success is always 100%
 - the same number of placing belongs to every first position
 - the number of valid solutions is: dimension!

Bishop position searching:
 - >70% success
 - solutions are possible from the middle or almost the end of the chessboard
 - all placings in the first or last row or column are absolutely fine solutions

Queen position searching:
 - a couple of % success
 - in case of n = 8, here are the solutions to the positions:
 4 8 16 18 18 16 8 4
 8 16 14 8 8 14 16 8
 16 14 4 12 12 4 14 16
 18 8 12 8 8 12 8 18
 18 8 12 8 8 12 8 18
 16 14 4 12 12 4 14 16
 8 16 14 8 8 14 16 8
 4 8 16 18 18 16 8 4
 - the sum of the numbers located in any row or column is:
 92 which is the final number of valid solutions
 - the number of solutions is symmetrical, not used
 (Jk : n == 2k + 1 : we have to count the solutions until the midline,
 multiply it by 2 and add the solutions belonging to the middle element
 of the first row
 in any other case: we have to count the solutions until the midline,

 multiply it by 2)
 - the number of placeable chess pieces can be known from the logic in every
 moment
 in case of queen:
 - before placing the 0th element: n^2 (every positions are free)
 - before placing the 1st element: n^2 - 3n + 2 (anywhere into the 1st row)
 - on the other places: it depends on the positions and the already filtered
 places
 - before placing the (n-1) element: there is exactly 1 free place.
 it is not used yet.

